Tag Archives | History of Science archives

John Innes Celebrates 50 Years in Norwich 2017

2017 is a landmark year for the John Innes Centre- we have now been based in Norwich for 50 years, and as a colleague recently remarked, that is the longest time the institute has been anywhere- making Norwich our true ‘spiritual home’. But when the Director of the ‘John Innes Institute’ (as it was then) announced the planned move to Norwich in 1962, the news was not initially welcomed by the staff – far from it. This blog attempts to explain why and describes some of the consequences of the move.

Undoubtedly one of the factors behind the staff’s opposition to the move was their love of the Bayfordbury site near Hertford. It had a lake for swimming and boating, 372 acres of grounds for botanising and birdwatching, and beautiful landscaped gardens and a pinetum. The Institute’s laboratories, including those in the recently constructed Cell Biology building, were well-equipped, there were extensive glasshouse facilities and plenty of land for plant experiments. Many of the staff had already experienced one move in their working lives- from the John Innes’ original site at Merton in Surrey. There were undoubtedly loved ones and connections they’d left behind in London, and Norwich was even more remote- too far indeed for the old Alumni to be able to visit. In short, the junior and senior staff were strongly against moving again and there was a call to arms. A printing press (secret from the Director) was set up in one of the Institute’s attics to print circulars and petitions for the staff’s opposition campaign. Two small files in our archive preserve their letters of protest to MPs and the media. These also document their appeals to the top people and organisations in plant science, and the support they received from people in power. But the Agricultural Research Council (ARC) had decided that all the research institutes it supported should be located close to a University and this decision could not be overturned. After looking at a couple of options it had been decided that the John Innes Institute should be associated with the University of East Anglia (UEA) in Norwich. Unable to accept this, most of the senior staff left for jobs at more established Universities. In the short term this meant a considerable contraction in the staff: among other losses, JI’s highly successful fungal genetics group was dispersed. Just 22 research staff in total agreed to transfer from the old site at Bayfordbury.

So why was the idea of moving to Norwich so unpalatable to John Innes staff? The ‘newness’ of Norwich’s University was one factor. Planning for the ‘University of East Anglia’ (UEA) had only begun in late September 1961. The basic nucleus of the University, its classrooms, library, laboratories and refectory opened in temporary prefabricated buildings dubbed ‘the Village’, off Earlham Road, in 1963. The first students were enrolled in the autumn of 1963. To keep on schedule the new Vice Chancellor had opted to start the new Schools in temporary accommodation, while permanent buildings were under construction on the golf course nearby – afterwards known as the ‘University Plain’. The School of Biological Sciences (BIO), with which JI was destined to be partnered, was one of the first to launch the University on its teaching career. The new undergraduates and John Innes staff would have found a University on a ‘domestic scale’, but a grand and creative future was planned for the permanent site (Thistlethwaite 2000). By the time the John Innes Institute moved up to Norwich in 1967, the greenfield golf course over the road had an uncompromisingly modern set of buildings (the Ziggurats) and soon after the University library moved over to its permanent building (1968). The initial plan was for the John Innes staff to move into buildings on what is now the Norwich Airport at Horsham St Faiths, and then move on to the University campus when permanent buildings became available.

First John Innes Institute students, Norwich, October 1969

What were the consequences of the Institute’s move to Norwich? The first challenge for the re-launched John Innes Institute in Norwich was to find a new Director. The job was offered to Dr Roy Markham, FRS, Head of the ARC’s Virus Research Unit in Cambridge- whose re-location to Norwich was also engineered by the ARC, introducing plant virology to the Institute’s scientific departments. Having settled the Directorship, the next job was to fill the vacant Head of Department posts. The John Innes Charity Trustees had agreed to fund three professorships in BIO in the new spirit of integration with UEA. New John Innes Professorships of Genetics and Applied Genetics were advertised and Dr David Hopwood and Dr D. Roy Davies appointed. Roy Markham became Professor of Cell Biology as well as Director. In return for lectures and university duties, the Professors enjoyed privileges equal to University teaching staff, and could recruit talented PhD students. But there were also limits placed on the symbiosis between the two institutions. In the early days, Gordon Cox, head of ARC, hoped that JI’s relationship with BIO would be as close as possible, and talked of them occupying the same building. But this arrangement was judged to be a potential threat to the future independence of the John Innes. It also involved a plan to physically separate the ‘pure’ from the ‘applied’ work of the Institute- which again was viewed unfavourably- potentially involving scientists in time-consuming trips to visit their field plots and glasshouses. The John Innes was still partly privately funded and consequently enjoyed much greater freedom to arrange its affairs than other ARC institutes. Roy Markham, with the support of the John Innes Charity (now John Innes Foundation) took the decision that JI would not be physically located with BIO on the University site, but would develop its own site on 29 acres of farmland at the side of Colney Lane, where it is still located today.

The first John Innes buildings were prefabs: the administration building 1967-8

The original John Innes Library, 1967-8


The building work started in June 1966, and the temporary buildings that were ready were first occupied the following March; the rest were completed in June 1967. In this first phase the staff worked from prefabs (except some of the virus research staff who were accommodated at the nearby Food Research Institute) until the permanent buildings were ready.


One member of staff recalls it wasn’t easy to do Electron Microscope work in these makeshift conditions. The prefabs were too hot in the summer and too cold in the winter and the softwood frames didn’t fit very well so that it was very difficult to keep out the dust. In fact, the windows were taped up to keep out the dust so they also suffered from poor ventilation (Wells, 2000). The permanent buildings were built between 1969 and 1971 and were designed by architect Alan Paine. Today the ‘Bateson Building’ and the John Innes ‘Rec Centre’ are the main remnants of this first permanent building phase.

The original front entrance of the John Innes Institute early 1970s.

During the construction phase not everything went according to plan: in 1969 a spectacular failure of the six plant growth cabinets was caused by the pile driving carried out to support the south end of the main building (17 piles over 50 feet deep). This caused the loss of large amounts of experimental material. More fortunately, the financial failure of the main building contractors at the beginning of 1971 happened when most of the main laboratory building was completed. Though not mentioned in the Director’s Annual Reports, the archives suggest there were some teething problems!

‘Monty Paine’s Leaking Institute’. Spoof portrait of Director Roy Markham in front of the new John Innes Institute. John Innes Centre Archives.

Thanks to an excellent collection of memoirs in the John Innes Archives we can begin to imagine what the transition to Norwich had involved for the staff. They had to cope with the considerable upheaval of moving the Institute’s property and plant collections. Fruit trees had to be propagated and sent up to the new experimental fruit farm at Stanfield, near East Dereham. The garden Curator Gavin Brown and Don Smith, the farm manager, had to move trees, shrubs, seed boxes, flower pots, ladders and tractors. They purchased a second-hand McVitie’s biscuit van in Norwich, and hired a driver, and he did three trips a fortnight backwards and forwards from Bayfordbury to Norwich for 18 months to complete the removal. It was a ‘fantastic undertaking’ (Brown, 1981). Each department had its own packing challenges, in the Genetics Department, for example, Rosemary Carpenter had to move the Antirrhinum (Snapdragon) collection- mostly as seed, moving as few plants as possible. The collection had to be re-grown in Norwich, thousands of plants in outdoor plots and indoors, but the upheaval meant that the Antirrhinum work was at first ‘nothing like on the scale of Bayfordbury’. Another colleague remembered the move as ‘chaotic’: ‘things did get mislaid and things did get broken’- though it wasn’t as bad as many anticipated (Harrison 1989). There was an upside for the re-located staff though: ‘the move brought us all closer together’ (Carpenter, 2009).

At Markham’s Virus Research Unit in Cambridge, 1967 was an unsettled year, punctuated with architects’ meetings to plan the new labs. Some of the VRU staff moved in 1967, but the ‘protein group’ remained in Cambridge until the following year, starting work in Norwich in November 1968. Margaret Short remembered: ‘The move to Norwich came as a very unwelcome interruption to research, quite apart from the tedious and dirty job of packing all the chemicals and the apparatus, which [apart from the protein analyser] we had to do ourselves’ (Short, 1989). The plant virus collection had to be left in Cambridge while suitable glasshouse space could be provided in Norwich- to the credit of the Cambridge glasshouse staff none of the cultures were lost. The new Virus Department labs were occupied in February 1971, on decimalisation day.

John Innes tea room (Bateson Common Room) early 1970s. Today lab coats are not allowed in eating areas!

John Innes ‘Rec Centre’ Bar, early 1970s.










John Innes Institute Reception in 1983, before it was remodelled.

Fast forward to April 1989, the Colney site was once again occupied by earth-movers, giant cranes, delivery lorries, mud and gravel. The new Sainsbury Laboratory was near completion, and the new Library and Archives building, designed by David Luckhurst, was finished in 1990. The construction of the new ‘Institute of Plant Science Research’ laboratory was well underway. This was the new three-storey ‘Cambridge Lab’ designed to house the 90 non-privatised staff moving up to Norwich from the old Plant Breeding Institute in Cambridge and their new colleagues, students and visiting scientists. The money from the PBI privatisation (£38.8M) was used to replicate the suite of special glasshouses and other facilities left behind at Cambridge, and paid for the new Library and archives (which now housed John Innes and PBI collections). It also financed new offices for the Director of IPSR (Harold Woolhouse) at which point the old Institute frontage and Reception was re-modelled and given the familiar curved shape it has today. The Germ Plasm Resources Unit (seed store) was constructed to hold PBI’s nationally important collection of seeds and JI’s Pisum collection. The PBI Trustees funded new containment glasshouses for future GM work and many other facilities- transforming the original John Innes site. And more organisations and buildings have joined the John Innes campus since then: The Nitrogen Fixation Laboratory moved up from the University of Sussex to the purpose-built Joseph Chatt building in 1995, the Conference Centre was built in the same year, and the Genome Building (now the Earlham Institute) opened in 2001. The newest addition to the Campus is the Centrum Building which opened in 2014.

In science, the last 50 years have been eventful. As one researcher recalled (VRU, Cambridge and JI, 1948-1992): ‘Being around in these years when science has changed so much has been extraordinary. My school text books were not so different from my Father’s but things are taught now that were not known when I was given my first pay’. (Plaskitt, 1995). The move to Norwich introduced the relatively new idea that a lab would consist not just of scientists and technicians but groups made up of scientists, technicians, students and post docs. Some of the highlights of their achievements over these years are captured in JI’s centenary timeline and the John Innes Foundation timeline.

There will be a Public Open Day on Saturday 16th September 2017 to celebrate the John Innes Centre’s 50 years in Norwich- do join us. Keep an eye out for news of JIC50 events on the John Innes Centre website


Further reading

Frank Thistlethwaite (2000). Origins: a personal reminiscence of UEA’s foundation (Cambridge: Frank Thistlethwaite).

Staff memoirs quoted here from the John Innes Centre Archives include:

Brian Wells, 2000; Gavin Brown, 1981; Brian Harrison, 1989; Rosemary Carpenter 2009; Margaret Short, 1989; and Kitty Plaskitt, 1995.


Continue Reading · Comments { 0 }

Introducing our new archivist Mark Pitchforth

_DSC8893Mark portrait

Mark Pitchforth pictured in the John Innes Archives

My name is Mark Pitchforth and I have just taken up the post of John Innes Centre Project Archivist, funded by the Welcome Trust, based in the JIC Library and working with the wonderful historical archive collections held there.

My career working with archives has been quite varied to date. Before qualifying as an archivist I completed a year’s traineeship at Royal Holloway, University of London and subsequently gained a place at Liverpool University, completing my Masters in Archives and Records Management in 2004. Since then I have worked as an archivist at Cheshire Record Office, West Yorkshire Archives Service and most recently Hampshire Record Office based in Winchester. During my time there I was seconded to work on a part-time basis at the National Motor Museum at Beaulieu on their motoring archives. This new position at JIC offers further variety and I’m very much enjoying the process of familiarising myself with the collections and the rich history attached to them. The wealth of material held is fantastic and I am excited at the prospect of making strides towards it becoming a more secure and accessible resource.

One of the most prominent collections among our archive holdings is the William Bateson papers documenting the life and work of Britain’s founding father of genetics. The collection comprises around 10,000 items dating from around 1869 to 1926, including two boxes of notebooks and small diaries. One of these notebooks I have found particularly interesting as it contains information on the setting up of the John Innes Horticultural Institution at Merton Park with hand-drawn pencil sketches of potential room layouts as well as research notes on rogue peas and lists of plants. The notebook also demonstrates some of the good archive conservation work which has been achieved. It had previously been exposed to water damage and was in extremely poor condition but with funding from the Welcome Trust and help from conservation staff at Norfolk Record Office, the notebook has now been cleaned and repaired and placed in custom archival packaging which will help protect it from any further damage in the future.

Bateson notebook with bespoke packaging and repaired cover after conservation at Norfolk Record Office

William Bateson notebook with bespoke packaging and repaired cover after conservation at Norfolk Record Office. It was formerly known only as ‘the mouldy notebook’ and could not be handled or read.


William Bateson's notebook contains room plans for the new Institute, plant lists and details of experiments on garden peas

William Bateson’s notebook contains room plans for the new Institute, plant lists, and details of his experiments on garden peas

We also hold collections relating to a number of other former Directors of John Innes including Cyril Darlington, who oversaw the move to Bayfordbury in Hertfordshire after the Second World War and whose papers have been catalogued in detail, and Harold W Woolhouse, who was instrumental in the development of the John Innes Centre during the 1980s as it grew from around 200 staff to over 800, incorporating the Sainsbury Laboratory, the Cambridge Laboratory and the Nitrogen Fixation Laboratory. The Woolhouse family have just passed on additional documents to add to the material already held relating to, amongst other things, his involvement with the Scientific Exploration Society, specifically projects based in Zaire (now Democratic Republic of Congo) and Colombia in the 1970s. We’ve also recently received a substantial number of documents from Prof David Hopwood, Emeritus Fellow in the Department of Molecular Microbiology at JIC and a pioneer in the field of the genetics of Streptomyces coelicolor. This demonstrates that the collection of archives is a continuous process and it is important that material of potential historical significance is preserved now for future generations of researchers.

I have begun developing a collections policy and staff manual encompassing all aspects of archive care. This will include improving the condition and security of the historic material through the introduction of further archive standard packaging, identifying items within the collections like the Bateson notebook in need of professional conservation work and revisiting our procedures and provisions surrounding access and disaster planning. Also important is to encourage greater awareness of the unique and valuable collections we hold and encourage as many people as possible to make use of them. This will be achieved by improving the level of archive cataloguing, ensuring that documents can be located and produced efficiently, making greater use of the searchable Calm archive database and generally promoting the work that we are doing.

For more information about the JIC historical collections go to http://collections.jic.ac.uk. If you have relevant material which you think should be preserved, either now or in the future, or any other questions regarding the archives then feel free to get in touch to discuss things further. My personal e-mail is Mark.Pitchforth@jic.ac.uk.

Mark’s post, and conservation and cataloguing work on the Bateson and Darlington collections was funded by a Wellcome Trust Research Resources Grant in Medical History (Grant no. GR093741)


Continue Reading · Comments { 0 }

Celebrating the history of peas and the International Year of the Pulse

This year (2016) has been designated the ‘International Year of Pulses’ (IYP) by the United Nations General Assembly. A quick look at the infographic on the official website tells you why: pulses are high in protein, their nutritional advantages include maintaining their quality after long storage, and they demand less water than other protein sources to produce, are economically accessible, and can also increase biodiversity and enhance soil fertility. Encouraging more pulses to be grown and eaten, and improving the protein content of the varieties under cultivation, is the goal of the international development and research communities, including the John Innes Centre. To mark this special year this blog delves a little into the history of just one of the pulses in widespread cultivation, the humble pea. Read what some of the early herbalists and botanists recorded about the pea (with illustrations from the John Innes Historical Collections). ‘Pulses’ are defined as edible dried mature seeds of leguminous crops so dried peas are the main focus of the blog, although the growth of the fresh pea market will also be touched on.

So to first briefly give some context, plant evidence points to two independent domestication events in peas. The first and largest cohort is Pisum sativum, which accounts for nearly all the cultivated peas worldwide.

Pisum sativum (syn. P. arvense) illustrated in John Sibthorpe's, Flora Graeca

Pisum sativum, which accounts for most of the cultivated peas worldwide, appears in many old botanical books as Pisum arvense (field peas). This illustration is from John Sibthorpe’s Flora Graeca (10 vols, London, 1806-40). John Innes Historical Collections.

The second domestication event took place in the Ethiopian highlands (‘Abyssinian peas’), a group that has proved difficult to classify. It is now classed as Pisum sativum sub-species abyssinicum, although molecular evidence shows it has more in common with two wild taxa, Pisum fulvum and Pisum elatius (P. sativum ssp elatius) than with sativum types. These peas had a more localised distribution in Africa.

Pisum fulvum illustrated in John Sibthorp's Flora Graeca

Pisum fulvum, one of the wild progenitors of Pisum abyssinicum. Illustration from John Sibthorp’s Flora Graeca (10 vols, London, 1806-40). John Innes Historical Collections.

Domesticated Pisum sativum, originated in the Near East around 8000 BCE, spread to Europe, Africa and Asia with Neolithic agriculture, fed Greek philosophers and Roman legionaries, and as ‘pease pottage’ (a gruel or thick soup), became a staple of medieval and early modern kitchens, keeping famine at bay.

Two illustrations of PIsum, from Ortus Sanitatis, 1511 and Hieronymus Bock, Kreuterbuch, 1560

Two early but unmistakable representations of Pisum from Ortus sanitatis, 1511 and from Hieronymus Bock, Kreuterbuch, 1560 (right). John Innes Historical Collections.

Pisum illustrated in Bock, Kreuterbuch, 1560




By the seventeenth century Pisum sativum had reached the Americas; peas are naturally packaged perfectly for expeditions, and the Pilgrim Fathers took dried peas with them on the Mayflower as part of their ration for the 65 day trip across the Atlantic. By this time European authors were beginning to discriminate between different pea varieties, and dividing ‘field’ from ‘garden’ peas.

17th century illustrations of peas, John Gerard's Herbal, 1597

Some of the different cultivated pea varieties available in the 17th century. Gerard noted that both field and garden peas were considered domesticated forms. John Gerard’s Herbal, 1597. John Innes Historical Collections.


Scottish or 'tufted' pea illustrated in John Gerard's Herbal, 1597

The Scottish or ‘tufted pea’ is a distinctive pea variety expressing apical fasciation. Heritage varieties of this form are still preserved in the Germplasm Resources Unit at the John Innes Centre today. Source: John Gerard, Herbal, 1597.

In the modern era, the creation and marketing of pea varieties proceeded apace with the development of plant breeding and the rise of horticultural companies like Suttons Seeds of Reading (founded 1806) or Carter’s Seeds of London (founded 1863). Today the John Innes Germplasm Resources Unit holds over 3,620 different ‘accessions’ of peas, from wild and domesticated peas collected on expeditions around the world, to ‘heritage’ peas from Great Britain (the oldest in the collection is the ‘Mummy Pea’ introduced in 1788), to an important collection of pea variants arising from mutations discovered or generated by scientists and breeders around the world. The development of new forms of peas in the 1970s by researchers at John Innes (the ‘leafless’ and ‘semi-leafless’ pea varieties), was based on mutant lines held in the collection. Today semi-leafless accounts for almost all dried pea varieties grown in the UK.

Eating peas fresh and green (rather than starting your dish with soaked dried peas) is a relatively modern luxury. Little dishes of garden peas were once presented for the enjoyment of Kings, Queens and Cardinals. By the time John Parkinson was writing his Paradisi in sole paradisus terrestris (2nd ed. 1656) green peas were eaten by rich and poor. He records that the ‘fairest’, sweetest, youngest and earliest peas were eaten by the rich, whereas the later, ‘meaner’ and lower priced peas were eaten by the poor or ‘serve to boyl into a kind of broth or pottage’ flavoured with Thyme, Mints, Savory ‘or some other such hot herbs to give it better relish’. Peas, he notes were especially consumed ‘in Town and Country in the Lent-time, especially of the poorer sort of people’. Mariners were another group relying on peas to sustain them ‘It is much used likewise at Sea for them that go on long voyages, and is for change, because it is fresh, a welcome diet to most persons therein’. As for the health benefits of including peas in the diet, 17th century authors rather sat on the fence, they were neither bad nor good!

Comments on the dietary value of peas from John Gerard's Herbal, 1636

Today peas are a taken-for-granted vegetable, and partly because food cultures have continued to evolve in the industrial age and new uses for peas have developed. Canned and frozen peas transformed the ‘fresh’ pea market. Dried peas found a new lease of life as ‘mushy peas’ (made from marrowfat peas). These will accompany your pie on a night out or at a football match in the north of England, and are also served alone as a snack in parts of the Midlands and North. A permanent stall in Norwich Market devoted to mushy peas has traded daily (except Sundays) since 1969. As an accompaniment to ‘traditional’ fish and chips mushy peas are an innovation of the 1970s. The dried pea remains central to many food cultures around the world including India, the Middle East, the Far East, Europe, and North and South America. Eating pea soup on Thursdays is a weekly tradition in Sweden and Finland and has been so ever since the Middle Ages. And in the Netherlands pea soup is traditionally served on New Year’s Day. Yet in the UK the pulse acreage in general has been in decline since 2001, falling from 319,000 hectares to 157,000 hectares in 2012. Combinable peas (for the dried pea market) have suffered the greatest decline, a 70% fall in the same period, though the acreage of vining (fresh) peas has been more stable it is also in gradual decline. The introduction of the three crop rule in 2015 as part of the Common Agricultural Policy reform (aimed at increasing diversification and ensuring that farming practices benefit the environment) has provided a significant stimulus to pulse growers but their expansion is still highly dependent on the size of the market and the commodity value.

The observation that peas and beans have root nodules (where nitrogen-fixing micro-organisms live in symbiosis with these plants) was made by plant anatomists in the seventeenth century. The role of legumes in restoring fertility to arable land was also well-known by the early nineteenth century, even if the nitrogen-fixing process itself remained largely a mystery. The famous ‘Norfolk four-course rotation’, popularised by the Holkham Estate in north Norfolk, was based on the clover crop for nitrogen fixing in a field rotation of wheat, barley, turnips and clover. In modern crop rotations peas take the place of clover as so few arable farms now have grazing livestock. Today’s CAP three-crop rule is a move to bring the benefits of pulses and their nitrogen fixation back onto more farms. To read more about the peas grown in the UK and their future prospects follow the link to the recent Anderson Report (2015) commissioned by JIC.

17th century illustration of root nodules on a pea plant, Malpighi, Anatome Plantarum, 1675

Root nodules can clearly be seen on the top left hand pea plant in this seventeenth century illustration. From Marcello Malpighi, Anatome plantarum (London, 1675). John Innes Historical Collections.

Given the number of byways a history of the pea could lead you down it’s surprising this crop hasn’t attracted more attention from historians (if you know of a good source for peas do let me know on Twitter @JIChistory or email sarah.wilmot@jic.ac.uk). I know of nothing to parallel Redcliffe Salaman’s The History and Social Influence of the Potato (1949) for example, or the delightful assemblage that is the virtual ‘World Carrot Museum’ founded and curated by John Stolarczyk from Skipton in North Yorkshire. A starting point might be Mike Ambrose’s 2008 chapter on the plant breeding history of the garden pea. In addition, and apparently well worth a visit, there are the Grade II listed ‘Pea Rooms’ at Heckington, Lincolnshire (post code NG34 9JH) where pea history is preserved in photos on the wall (if anyone has visited and has photos please get in touch). Peas also assume an important role, if still not quite centre stage, in the history of genetics, thanks to the focus on Gregor Mendel’s pea hybridisation experiments (published in 1866) and the attention paid them since their ‘rediscovery’ around 1900 (see earlier blogs for a flavour of the controversies around Mendel and his British defender, William Bateson, the first Director of the John Innes). The 2016 anniversary of Mendel’s publication will bring historians of science together for a new round of commemoration, new Mendel exhibitions, and some exciting new historical interpretations. The British Society for the History of Science (BSHS) is about to launch an educational initiative in partnership with the Brno Mendel Museum and the Royal Society to celebrate the contribution of Mendelian genetics to modern science and highlight the contributions made by Cambridge women scientists in the early twentieth century.

Caroline Pellew, one of the early pea geneticists at John Innes, illustrated by Dorothy Cayley.

Caroline Pellew working in the plots at the John Innes Horticultural Institution in the 1910s. Caroline was one of the Institute’s first pea geneticists, working alongside William Bateson. Bateson had encouraged women researchers to take up genetics both at Cambridge and at the John Innes. Caroline’s route into plant science was University College Reading’s two-year Diploma in Horticulture though, not the University of Cambridge. Illustration by Dorothy Cayley, John Innes Historical Collections.

The celebrations will coincide with the publication by the BSHS of a new edited English translation of Mendel’s work (surprisingly the one relied on currently is still the one commissioned by Bateson in the early 1900s), and will be followed up by educational web-based material. Meanwhile a helpful textbook edited by Denise Phillips and Sharon Kingsland, New Perspectives on the History of Life Sciences and Agriculture (Springer, 2015; available in the John Innes History of Genetics Library) includes chapters by Sanders Gliboff and Jonathan Harwood re-assessing the literature surrounding the ‘Mendelian revolution’ and looking again at Mendel’s impact on plant breeding (and its wider ramifications for debates about human breeding). At Leeds, Greg Radick is working on a biography (due out in 2018) of W F R Weldon, Bateson’s arch rival and critic of Mendelian genetics in Britain.  Provisionally titled Disputed Inheritance: The Battle over Mendelism and the Future of Biology, you can expect some challenging new insights on the controversy caused by Mendel’s peas. For a flavour of what’s to come listen to the Mendel discussion hosted by the Royal Society last summer.



Continue Reading · Comments { 0 }

Mendel and the culture of commemoration

Last month (February 8th) was the 150th anniversary of Gregor Mendel reading the first part of his paper ‘Experiments on plant hybrids’ to the natural history society in Brünn, now Brno in the Czech Republic. Next Sunday (March 8th) will be the anniversary of Mendel reading the concluding part of his paper, an account of a long series of crossing experiments on garden peas.  The big commemorative celebrations will take place from 7th-10th September 2015 when international scientists gather at the Mendel Museum of Masaryk University in Brno for lectures and speeches on ‘Mendel’s legacy: 150 years of the genius of genetics’. In addition, the occasion will be marked by two linked exhibitions in the Mendel Museum: the already launched ‘Unseen for many years’ exhibition (8th February to 5th April) showcases Mendel’s original documents which have been brought home to Brno from the University of Illinois where they now belong. The second exhibition will feature the life of Mendel’s first biographer Hugo Iltis (1st October to 31st December). In between these there will be a display celebrating Mendel at the State Darwin Museum in Moscow titled ‘The Construction Set of Life’ (April 18th to May 31st). These events all affirm Mendel as the founding father of modern genetics.


This seems then to be a good moment to reflect on the ‘culture of commemoration’- how history of science is re-told and why ‘discovery narratives’ of the kind that surround Mendel are promoted. The lionisation of Mendel in England began soon after the ‘rediscovery’ of his paper around 1900 by three European botanists: de Vries in Holland, Correns in Germany, and Tschermak in Austria. Cambridge University zoologist William Bateson organized the first English translation of Mendel’s paper for the Royal Horticultural Society in 1901, and he arranged for the translation to be reprinted with modifications on several occasions. Bateson also published one of the earliest biographical notices of Mendel in a preface to his book Mendel’s Principles of Heredity: A defence (1909), from material he had collected on a pilgrimage to Brno in 1904. Bateson’s narrative included many aspects of the history we’re now familiar with – the theme of neglected genius, the sensational rediscovery and confirmation of Mendel’s experiments, and the idea that if Darwin had been able to read Mendel the development of evolutionary science would have been very different. Versions of this story (without any historically informed reflection on the relationship between Darwin and Mendel) appear in the biology textbooks we offer to today’s schoolchildren and students.

Images of Mendel's garden were popular with early geneticists.

Images of Mendel’s garden were popular with early geneticists and were able to stand alone as icons of the Mendel discovery story. This one collected by William Bateson in 1910 was used by @JohnInnesCentre recently to commemorate Mendel’s paper.

For Bateson, commemoration was about bringing Mendel into general recognition. It was a calculated move in a battle he was engaged in with the English biometricians and other biological schools about the methods of biology and the causes of evolution. Bateson built his reputation and career with the authority of Mendel behind him. This relationship is nowhere better expressed than in the portrait of Bateson (below) taken at the Darwin Museum in Moscow in 1925. We know the saying ‘standing on the shoulders of giants’ but in this photograph, the bust of Mendel is tellingly perched above William Bateson’s shoulders, with rows of domestic chickens and guinea pigs, the stock-in-trade of contemporary genetics experiments, arranged attractively in display cases behind him. Little would we suspect from this image that at this point in his career Bateson had told his son Gregory (named after Mendel) that his life-long devotion to Mendelism had been a mistake, ‘a blind alley which would not throw any light on the differentiation of species, nor on evolution in general’ (Cock, 1980).

William Bateson with a bust of Gregor Mendel in the Darwin Museum, Moscow, 1925

William Bateson pictured beneath a bust of Mendel, Darwin Museum, Moscow, 1925

Commemoration is a collective endeavour that scientists engage in to build and sustain scientific disciplines (Haddad, 1999). Historians of science sometimes reinforce and at other times work against the discovery narratives that the act of commemoration produces. Revisionist accounts of the history of Mendelism have revealed how much of the complexity of early twentieth century biology gets forgotten in celebratory narratives. For example, we forget that Mendel’s three ‘re-discoverers’ had serious doubts about how widely Mendel’s laws applied; that within a year de Vries had turned away from Mendelian heredity; and that Tschermak’s interpretation of ‘Mendel’s principles’ differed significantly from Bateson’s. When re-reading Mendel’s paper we should also be mindful of Ronald Fisher’s (not dis-interested) conclusion that ‘Each generation, perhaps, found only in Mendel’s paper what it expected to find … [and] … ignored what did not confirm its own expectations’ (Fisher, 1936).

Mendel commemoration, of course, is not just for scientists or historians of science, it has had many other uses as well. Bateson attended the first international gathering to memorialise Mendel in Brno in 1910; he was present at the unveiling of the Mendel statue and gave one of the speeches. He witnessed the ceremonies being used to express German political power and commented that Mendel’s own Augustinian monastery and the Czechs were given a very minor role. The Abbot was the only one present at the celebrations who had known Mendel personally but he was not included in the speeches; the pre-celebration meeting and exhibition of Mendel documents took place in the ‘German House’ not the monastery, and the inscription on the monument was in German alone (Cock, 1982). Mendel’s story has also been used to promote science, or at least ‘free thinking’, over religion, notwithstanding his position as a friar and later Abbot within a monastic community. The photograph of Mendel in the Darwin Museum in Moscow records a time when it was possible for Mendel to represent the glories of science, within a state cultural modernisation programme that had its museum sculptors busy replacing religious icons with statues of scientists. When genetics later fell out of favour in Russia, Mendel’s clerical position made him doubly suspect.

To me the most surprising history of Mendel commemoration is the one recently unearthed by Ronald Numbers (Numbers, 2015). He documents that for almost a century Mendel and Bateson have been celebrated as creationist heroes. Mendel was embraced with enthusiasm by antievolutionists after Canadian-born school teacher George McCready Price began promoting Bateson’s statements against evolutionary theory to Christian fundamentalists. Though Bateson’s earlier books had said little about the relationship between Darwin and Mendel, his presidential address to the British Association for the Advancement of Science in Melbourne, Australia in 1914 began what became a long-standing creationist interest in Mendel. Price (bolstered with quotations from Bateson’s lecture) credited Mendelism with undermining Darwinism. If Mendelism allowed only for the varied re-assortment of hereditary characters already present there was no room for evolution. Later Bateson tried in vain to express his faith in evolution, to neutralise the coverage of his lectures that had provided fodder to the creationist camp. He failed, for Numbers shows that Mendel continues to be commemorated as a ‘creationist hero’ into the 21st century.

All of this shows that neither Mendel nor Bateson had control over the way their images or writings were represented. To borrow an insight from the Spanish author Javier Marίas, no one achieves silence, not even after death! It follows that studying the history of science is more than the interpretation of ‘landmark’ texts but must involve following ideas in circulation- studying both the people speaking on behalf of the dead scientists and the consumers of that information.


Postscript: A date for your diary

The John Innes Centre will have its own commemoration of Mendel when we launch our new annual history of science lecture (the Innes Lecture) within the Friends of John Innes Centre lecture series in April. We’re very pleased that the inaugural Innes Lecture will be given by Professor Greg Radick from University of Leeds. Greg, who teaches history and philosophy of science, has titled his lecture ‘Mendel the Fraud? A Social History of Truth in Genetics’.  This event will take place in the John Innes Conference Centre, on April 20th 2015 from 18.30 to 21.30.

To book a place at the Innes Lecture please email dawn.rivett@nbi.ac.uk


To find out more about the 2015 Mendel celebrations: http://www.mendelgenius.com/  [More events may get added to the current list over the coming months so watch this space!]

Further Reading: This is just a small selection, there’s so much more available on the web – get exploring!  A great resource is to start with is http://www.mendelweb.org/

Alan G. Cock (1980), ‘William Bateson’s Pilgrimages to Brno’, Brno Acta Musei Moraviae, Folia Mendeliana, 65: 243-250.

Alan G. Cock (1982), ‘Bateson’s impressions at the unveiling of the Mendel monument at Brno in 1910’, Brno Acta Musei Moraviae, Folia Mendeliana,  67: 217-223.

Ronald A. Fisher (1936), ‘Has Mendel’s work been rediscovered?’ Annals of Science, 1: 115-137.

George E. Haddad (1999), ‘Medicine and the culture of commemoration: representing Robert Koch’s discovery of the tubercle bacillus’, Osiris, 14: 118-37. [This classic paper has inspired historians of science and medicine to critically re-examine commemorative events. See also the other papers in this volume on the politics of collective memory].

Javier Marίas (2006), Your Face Tomorrow. 1. Fever and Spear. Translated by M. J. Costa, London: Vintage Books, p. 4.

Ronald L. Numbers (2015), ‘Gregor Mendel: Creationist Hero’, Science and Education, 24: 115-23.

Robert C. Olby (1979), ‘Mendel No Mendelian’, History of Science, 17: 53–72.

Robert C. Olby (2000), ‘Horticulture: the font for the baptism of genetics’, Nature Reviews, Genetics, 1: 65-70. [A good summary of revisionist work on the early history of Mendel’s paper and the groups who were not receptive to Mendelism].

Marsha L. Richmond (2006), ‘The 1909 Darwin Celebration. Re-examining Evolution in the Light of Mendel, Mutation and Meiosis’, Isis, 97: 447-484. [A behind-the-scenes look at how this Darwin commemorative event was stage managed, with valuable insights on contemporary attitudes to Mendel, Bateson, Mendelism and evolution].

Jan Sapp (1990), ‘The Nine Lives of Gregor Mendel’, pp. 137-166 in ed. H. E. Le Grand, Experimental Enquiries (Kluwer Press: Netherlands). [An excellent survey of all the different ways Mendel has been portrayed and also available at Mendelweb].




Continue Reading ·

From ‘Dora and Desmond’ to Professor Roy Markham and Professor David Lipkin

In this guest blog archives enthusiast Anna Cullingford describes how she stumbled across a collection of John Innes related letters at a local auction in Norfolk. My neighbour had put us in touch, knowing that I looked after the John Innes archives. ‘Would I like to see them?’- Of course I would!  I thought this might be an opportunity to rescue a part of John Innes history that might otherwise be lost.  Anna was kind enough to check her set of originals against our box of photocopies and concluded that we do have copies of the entire correspondence in the John Innes Archives- these had been donated some years ago. How the originals later got into the auction is a mystery. Anna’s tale shows how papers like this, with no obvious interest to the local auction-going public, could easily have disappeared without trace.

To provide some biographical background to the two scientists who feature in Anna’s blog:  Roy Markham, FRS (1916-1989), was a biochemist who studied plant viruses at the Virus Research Unit in Cambridge, of which he was Head from 1960. As Anna explains, he then became the first Director of the John Innes Institute when the Institute moved to Colney in Norfolk in 1967. Roy was interested in the structure of plant viruses, and during the 1960s and 70s was preoccupied with improving methods for obtaining information about this using the electron microscope. His later years were dominated by the demands of his Directorship.  David Lipkin (1913-2004) was a chemist with a distinguished career that included developing new compounds and finding innovative ways to synthesise existing compounds. During his long correspondence with Roy, Lipkin worked in the Department of Chemistry at Washington University in St. Louis which he had joined with five other scientists from the Manhattan Project in 1946. His work had an impact on many fields including biochemistry, genetics, clinical medicine and pharmacology. But it is probably the time that he worked on the Manhattan Project (a US-led project to develop atomic bombs), that will attract the attention of historians of science. Anna, now custodian of the letters, takes a longer and more personal view of the man understood through this trans-Atlantic friendship.

Anna Cullingford with letters from the Markham - Lipkin correspondence

Anna Cullingford with ‘Dora and Desmond’ and letters from the Markham – Lipkin correspondence

From “Dora and Desmond” to Professor Roy Markham and Professor David Lipkin

In July 2011 I was at a local auction looking to bid for a pair of African carved Tribal Art figures. On the viewing day I noticed there was a box with paperwork and glass slides up for bidding attributed to Professor Roy Markham, the first director of the (Norwich) John Innes Institute. I knew of him as I had worked at the JII/JIC from 1993 to 2001.

On auction day, when I had bid and paid for my items (now affectionately known as Dora and Desmond), I decided to return to the auction room to see who would buy the Roy Markham papers and how much they would go for. The auctioneer started the bidding for the lot at £100 but there were no bidders, and he reduced the price each time until £10 was reached. I realised that there was no reserve on the papers, and as the auctioneer faltered I was concerned that the lot would be withdrawn and maybe scrapped if there was no interest, so I decided to bid for them. Thus I became the owner of a box of letters and glass photographic negatives pertaining to Roy Markham and his working life in Cambridge and Norwich.

On closer inspection at home, I discovered that there are 101 letters and papers, 90% of these are letters between Professor Roy Markham and Professor David Lipkin of the University of Washington, in St Louis, USA. Had I been a contemporary of theirs I would never have associated with them. I have found them on paper to be warm, humorous and above all, human. They obviously enjoyed a good working relationship and got on well together.

The letters in the 1950’s and 60’s are from these two men who are working at the bench and enjoying their work. There are a lot of chemical/scientific references as they bounce ideas off each other. Much of this material is over my head. As they mature and their careers develop the lab. work takes second place to other responsibilities, like admin. and managerial roles, and the chemistry references are replaced by more personal things, such as how they are managing their new roles and what their families are up to. They also comment on world events at the time, such as the assassination of J F Kennedy, the Vietnam war and the Washington and Baltimore riots. As well as being highly gifted academically, Roy was also good at practical work and was adept at making and/or adapting apparatus for his experiments. Several of the letters to David have rough sketches of his designs and modifications. David  was awarded a Guggenheim Fellowship in 1955, enabling him to spend a few months in Europe and he came to Cambridge to work for a time. David was the first to synthesize cyclic AMP and worked on nucleic acids.

Of special interest to me are the letters from the late 1960’s when Roy was asked to become director of the new John Innes Institute in Norwich and his subsequent move, with his group, from Cambridge to Norwich. There are other interesting letters (and a secret) too, and I consider it a privilege to be the owner of this correspondence. I have had many hours of enjoyment from these letters. My next task is to try and catalogue the glass negatives.

The last letter was sent from Roy to David on 5th May 1978 – there is nothing from either man after this date. Roy died aged 63 in November 1979, while David died aged 91 in March 2004.


I picked these two letters for the photograph because they are my favourite letters of them all. I think because Roy and David are comfortable with each other, as they have been corresponding for many years, their personalities are given free rein on these pages here. Roy has written 6 pages by hand to David, telling of his thoughts and feelings about being appointed Director of the JII, as it was then. Having worked at the JIC for 8 years this is very interesting to me. His letter is a reply to David’s letter, which is 10 pages long!! David has hand written his letter too – normally his letters were typed by his secretary. Again, there are personal thoughts, comments on world events and scientific information included.



Continue Reading ·